

# Design of Lewis Pair-Functionalized Metal Organic Frameworks for CO<sub>2</sub> Hydrogenation

Jingyun Ye<sup>†</sup> and J. Karl Johnson<sup>\*,†,‡</sup>

† Department of Chemical & Petroleum [En](#page-6-0)gineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States ‡ National Energy Technology Laboratory, Pittsburgh, Pennsylvania 15236, United States

# **S** Supporting Information

[ABSTRACT:](#page-6-0) Efficient catalytic reduction of  $CO<sub>2</sub>$  is critical for the large-scale utilization of this greenhouse gas. We have used density functional electronic structure methods to design a catalyst for producing formic acid from  $CO<sub>2</sub>$  and  $H<sub>2</sub>$  via a two-step pathway having low reaction barriers. The catalyst consists of a microporous metal organic framework that is functionalized with Lewis pair moieties. These functional groups are capable of chemically binding  $CO_2$  and heterolytically dissociating  $H_2$ . Our calculations indicate that the porous framework remains stable after functionalization and chemisorption of  $CO<sub>2</sub>$  and H2. We have identified a low barrier pathway for simultaneous addition of hydridic and protic hydrogens to carbon and oxygen of  $CO<sub>2</sub>$ , respectively, producing a physisorbed HCOOH product in the pore. We find that activating  $H_2$  by dissociative adsorption leads to a much lower energy pathway for hydrogenating  $CO<sub>2</sub>$  than reacting  $H<sub>2</sub>$  with chemisorbed  $CO<sub>2</sub>$ . Our calculations provide design strategies for efficient catalysts for  $CO<sub>2</sub>$ reduction.



KEYWORDS: catalytic reduction of  $CO<sub>2</sub>$ , UiO-66, Lewis acids, Lewis bases, density functional theory, metal-free catalysis

# ■ INTRODUCTION

Efficient conversion of  $CO<sub>2</sub>$  from various emission sources into valuable chemicals has the potential to reduce net  $CO<sub>2</sub>$ emissions while generating high-energy density fuels and other commodities.<sup>1−6</sup> However, reduction of CO<sub>2</sub> is very challenging because of its chemical inertness and thermodynamic stability, w[hich](#page-6-0) typically requires aggressive reaction conditions (high temperature and high pressure). It has been assumed that reduction of  $CO<sub>2</sub>$  under mild conditions requires the activation of  $\mathrm{CO}_2$ , usually with an organometallic catalyst.<sup>7</sup> Indeed, catalytic hydrogenation of  $CO<sub>2</sub>$  to formic acid (HCOOH) is most commonly accomplished via homogeneo[us](#page-6-0) catalysis with organometallic complexes containing rhodium, ruthenium, or iridium.<sup>8,9</sup> Heterogeneous hydrogenation of  $CO<sub>2</sub>$ can be accomplished on metal surfaces such as Ni<sup>10−13</sup> and  $Cu, <sup>14,15</sup>$  but these [re](#page-6-0)actions have higher barriers than homogeneous catalysts and, hence, require highe[r](#page-6-0) t[em](#page-6-0)peratu[res](#page-6-0).

Perhaps the most simple and direct route for  $CO<sub>2</sub>$  reduction is the [ad](#page-6-0)dition of a proton (to the oxygen atom) and a hydride (to the carbon atom) to produce HCOOH. Conceptually, the required protic and hydridic hydrogens can be provided by Lewis bases and acids, respectively. Indeed, it has been experimentally shown that frustrated Lewis pairs (FLPs) can both bind  $\overrightarrow{CO_2}$  and heterolytically dissociate  $\overrightarrow{H}_2$ .<sup>16,17</sup> As a result, FLPs have been considered as excellent candidates for both  $CO<sub>2</sub>$  activation and subsequent stepwise hydro[genat](#page-6-0)ion for the production of hydrogen-rich C1 fuels.<sup>18−21</sup>

FLPs require significant steric hindrance to prevent the formation of Lewis acid/Lewis base a[dducts](#page-6-0) in solution, which

would render them completely inactive. These very bulky substituents, however, may increase the energy required to activate the reactants.<sup>18</sup> It is therefore important to explore other possibilities to stabilize Lewis pairs (LPs) that do not involve steric hindranc[e.](#page-6-0) In this work, we propose incorporating LPs into nanoporous materials such as metal organic frameworks (MOFs) as a platform for catalytically reducing  $CO<sub>2</sub>$  with  $H<sub>2</sub>$ .

Our hypothesis is that LP-functionalized MOFs will retain the chemical activity of FLPs for binding  $CO<sub>2</sub>$  and dissociating  $H_2$ . These LP-MOFs should be active for the reduction of  $CO_2$ to formic acid. The geometric constraint of the LPs' being covalently bound to the MOF at specific sites will prevent mutual quenching of a pair of LP moieties within the pore, without the need for steric hindrance.

Although homogeneous catalysts have lower reaction barriers for  $CO<sub>2</sub>$  hydrogenation compared with extant heterogeneous catalysts, they also have significant drawbacks. Our proposed LP-functionalized MOF catalyst combines the advantages of each and thereby bridges the gap between homo- and heterogeneous catalysis. $2\frac{25}{23}$  The potential advantages of our proposed catalyst include (1) metal-free catalytic sites, reducing the cost of the catalyst; [\(2\)](#page-6-0) ease of catalyst separation/recycle and product recovery;  $(3)$  the potential to combine the  $CO<sub>2</sub>$ capture and conversion steps in a single material;<sup>24-26</sup> (4) improved mass trans[fe](#page-6-0)r performance compared with liquid

```
Received: February 23, 2015
Revised: March 23, 2015
Published: April 1, 2015
```
<span id="page-1-0"></span>phase reactions, in which gas−liquid mass transfer resistance and solubilities are often limiting; (5) good thermal stability, allowing for a wide range of operating temperatures; (6) pore environments that can potentially be tuned to increase the reactivity (e.g., through confinement and orientational restrictions); and (7) low reaction barriers, allowing  $CO<sub>2</sub>$ reduction under mild conditions.

We have chosen UiO-66 (Figure S1) as a candidate MOF for LP functionalization because it is chemically and thermally stable,<sup>27−32</sup> highly selective toward  $CO_2$  adsorption,<sup>29,33−36</sup> and can be readily functionalized via various approac[hes](#page-6-0).[27,](#page-6-0)28,30,33−35,37−<sup>41</sup> In this work, we carry [out](#page-6-0) [den](#page-6-0)sity functional theory calculations using the CP2K code, $42$  including dispersio[n correc](#page-6-0)t[ions,](#page-6-0) $43$  $43$  to test our hypothesis that LPfunctionalized MOFs can be used to catalyze the [red](#page-7-0)uction of  $CO<sub>2</sub>$  to formic acid wit[h](#page-7-0)  $H<sub>2</sub>$ .

It is important at the outset to establish whether UiO-66 or similar MOFs can be expected to be functionalized with moieties of the size and complexity of LP functional groups. There are three possible routes to functionalize MOFs, including robust Zr-based materials such as UiO-66 and its analogous. These include mixed ligand synthesis,30,33,38,41,44−<sup>46</sup> postsynthetic modification  $(PSM)$ ,<sup>28,30,39,47–49</sup> and postsynthetic ligand exchange (PSE).<sup>30,38,46</sup> We note [that all](#page-6-0) [th](#page-7-0)r[ee](#page-7-0) methods have been used to functio[nalize](#page-6-0) [Zr-bas](#page-7-0)ed MOFs with large complex functional gro[ups.](#page-6-0) [Fo](#page-7-0)r example, Wang et al. functionalized UiO-67 with a series of photocatalysts, demonstrating activity for  $H_2O$  oxidation and  $CO_2$  reduction.<sup>44,45</sup> Garibay et al. have used PSM to functionalize UiO-66 with a variety of anhydrides, including octanoic and maleic anh[ydrid](#page-7-0)e, $^{28}$  which are larger than the LP group we investigate in this work. The PSE method has been used to introduce a bulky ph[oto](#page-6-0)catalyst into UiO-66.<sup>38</sup> These examples demonstrate that catalytic moieties can be covalently bonded into UiO-based MOFs and that the re[su](#page-6-0)lting functionalized MOFs are very stable and can have enhanced catalytic activity due to stabilization or protection of the catalytic complexes. It is therefore reasonable to expect that functional groups containing LP moieties can be incorporated into UiO-66 or related MOFs, although, to the best of our knowledge, this has not yet been attempted.

# ■ METHODS

Periodic DFT calculations were carried out in the mixed Gaussian plane wave scheme as implemented in the  $CP2K<sup>42</sup>$ code with Grimme's D3 dispersion corrections.<sup>43</sup> The PBE functi[on](#page-7-0)al<sup>50</sup> was used to calculate the exchange correlation energy. The DZVP-MOLOPT basis set in com[bin](#page-7-0)ation with Geodeck[er,](#page-7-0) Teter, and Hutter pseudopotentials<sup>51</sup> were used with a plane wave cutoff energy of 360 Ry. The adequacy of the basis set and energy cutoff parameters have been [co](#page-7-0)nfirmed by multiple test calculations (see Table S1 and Figure S2 in the Supporting Information). We have also checked the accuracy of the PBE functional by comparing calculations on related [molecular species using](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf) the CP2K and Gaussian 09<sup>52</sup> codes. We found that the PBE functional gives adsorption energies that are in good agreement (average absolute deviation of [0.0](#page-7-0)5 eV) with second-order Møller−Plesset perturbation theory, coupled cluster with single, double, and perturbational triple excitation calculations, and calculations with the M06-2X functional (see Tables S2 and S3 in the Supporting Information).

The unit cell of UiO-66 (Figure S1a) was taken from the Cambridge Crystallograp[hic Data Centre \(CCD](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf)C deposition

number:  $8895295^{35}$ ), and calculations were carried out on the primitive cell (Figure S1b) to save computational effort. The lattice constants [of t](#page-6-0)he optimized primitive cell are  $a = b = c =$ 14.788 Å,  $\alpha = \beta = \gamma = 60^{\circ}$  $\alpha = \beta = \gamma = 60^{\circ}$  $\alpha = \beta = \gamma = 60^{\circ}$  and correspond to the unit cell with a  $= b = c = 20.913$  Å,  $\alpha = \beta = \gamma = 90^{\circ}$ . These values are in very good agreement with published experimental<sup>27,32,53</sup> and  $computational<sup>31,32,35</sup> data.$ 

We selected the FLP 1-[bis(pentafluoropheny[l\)bo](#page-6-0)[ryl](#page-7-0)]-3,5-ditert-butyl-1[H-pyraz](#page-6-0)ole<sup>54,55</sup> (FLP1, Figure 1a) as the parent



Figure 1. (a) Structure of 1-[bis(pentafluorophenyl)boryl]-3,5-di-tertbutyl-1H-pyrazole, FLP1. (b) Structure of 1-(difluoroboranyl)-4 methyl-1H-pyrazole, denoted as  $P-BF_2$ . (c) Schematic of a UiO-66 primitive cell functionalized with P-BF<sub>2</sub>.

structure for our candidate LP functional groups because it has both Lewis acid (B) and base  $(N_b)$  sites within a single molecule and shows the ability to heterolytically cleave  $H_2$  and bind  $CO_2$ <sup>54,55</sup> We have modified FLP1 by removing the tertbutyl groups and replacing the bulky  $C_6F_5$  moieties with F atoms. W[e hav](#page-7-0)e also added a methyl group to link with the 1,4 benzenedicarboxylate (BDC) linkers of the MOF framework. The resulting molecule (1-(difluoroboranyl)-4-methyl-1Hpyrazole), which we name  $P-BF<sub>2</sub>$  is shown in Figure 1b. P- $BF<sub>2</sub>$  is a Lewis pair without steric hindrance, which would form a dimer in solution, quenching the Lewis acid (B) and base  $(N_b)$  sites. However, binding P-BF<sub>2</sub> to BDC linkers of UiO-66 prevents migration and association of  $P-BF<sub>2</sub>$  groups (Figure  $1c$ ).

In this work, we examine the case of one  $P-BF_2$  group per UiO-66 primitive cell (four per unit cell) and denote this system as  $UiO-66-P-BF<sub>2</sub>$ . Future work will explore multiple functional groups per primitive cell. We found that fully relaxing the geometry and cell parameters of  $UiO-66-P-BF<sub>2</sub>$ gave lattice constants that were almost identical to the relaxed UiO-66 values. Furthermore, optimizing the structure with chemisorbed  $CO_2$  or  $H_2$  in UiO-66-P-BF<sub>2</sub> also perturbed the lattice constants and energies by a very minor amount (see Table S4 in the Supporting Information). Therefore, we held the lattice constants fixed at the ground state UiO-66 values for most calculation[s to save computational](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf) time.

The adsorption energies of  $H_2$  or  $CO_2$  were defined as

$$
E_{\text{ad}}(M) = E(M/UiO-66-P-BF_2) - E(UiO-66-P-BF_2)
$$
  
- E(M) (1)

where M represents either  $H_2$  or  $CO_2$  and  $E(M/UiO-66-P BF<sub>2</sub>$ ),  $E(UiO-66-P-BF<sub>2</sub>)$ , and  $E(M)$  represent the total energies of the UiO-66-P-B $F_2$  with the adsorbate, the empty UiO-66-P- $BF<sub>2</sub>$ , and the gas phase adsorbate, respectively. In the case of

coadsorption, the relative energies were computed with respect to the sum of the total energies of the corresponding gas phase molecules. Zero-point energy (ZPE) corrections were applied to all the energy values. Comparison of the energies with and without ZPE corrections are provided in the Supporting Information (Figures S13−S15). Equation 1 defines negative values as exothermic and positive values as e[ndothermic](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf) [processes. T](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf)ransition states along the reac[tio](#page-1-0)n pathway were determined by using the climbing image nudged elastic band (CI-NEB) method.<sup>56</sup> Transition states were confirmed through frequency analysis, verifying that the transition complex had only one imaginar[y f](#page-7-0)requency vibrational mode.

# ■ RESULTS AND DISCUSSION

The optimized structure of UiO-66-P-BF<sub>2</sub> is shown in Figure 2a. The structures of UiO-66-P-BF<sub>2</sub> with dissociated H<sub>2</sub> (2H<sup>\*</sup>) and chemically bound  $CO_2$  (denoted  $CO_2^*$ ) are shown in Figure 2b and c, respectively. Key atoms in these structures are labeled to facilitate further discussion. The relaxed lattice parameters for the three structures are given in Table S4 of the Supporting Information and are very close to those of the



Figure 2. Optimized configurations of (a) UiO-66-P-BF<sub>2</sub>, (b) H<sub>2</sub> dissociatively adsorbed in UiO-66-P-BF<sub>2</sub>, and (c)  $CO_2$  chemisorbed in UiO-66-P-BF<sub>2</sub>.

parent UiO-66; the largest absolute deviation in the lattice parameters is 0.026 Å, and the average absolute deviation is 0.01 Å. We infer from these small changes in the lattice parameters that the functionalized MOFs are most probably stable because it is known experimentally that many functionalized UiO-66 derivatives show quite similar chemical and thermal stabilities with the parent  $\overline{Ui}O$ -66.<sup>30</sup> We calculated the pore volume of UiO-P-BF<sub>2</sub> using PLATON.<sup>57</sup> We have also computed the pore volume of UiO-66 a[nd](#page-6-0) selected functionalized UiO-66 materials that have been [sy](#page-7-0)nthesized and reported in the literature. We compare the computed pore volumes and porosities of these materials in Table 1. Our

Table 1. Summary of Pore Volumes and Porosities for Selected Functionalized UiO-66 Materials Calculated from PLATON.<sup>57</sup>

| material                           | pore volume $(\AA^3)$ | porosity $(\%)$ |
|------------------------------------|-----------------------|-----------------|
| $UiO-66$                           | 1208.2                | 52.8            |
| $UiO-66-P-BF2$                     | 1039.5                | 45.5            |
| UiO-66-NH- $(CH_2)_3SO_3H^{39}$    | 1023.3                | 44.7            |
| $UiO-66-AM7^{28}$                  | 978.7                 | 42.8            |
| UiO-66-[FeFe](dcbdt)(CO) $_6^{38}$ | 907.7                 | 39.7            |

calculated porosity of UiO[-6](#page-6-0)6 is in excellent agreement with the reported value of 52.6%.<sup>31</sup> The calculated pore volume of UiO-66-BF<sub>2</sub> is reduced by 169 Å<sup>3</sup> (14%), and the porosity is reduced by 7.3% compared [wit](#page-6-0)h unfunctionalized UiO-66. The computed pore volumes of UiO-66-NH- $\left(\text{CH}_2\right)_3$ SO<sub>3</sub>H,<sup>39</sup> UiO-66-AM7, $^{28}$  and UiO-66-[FeFe](dcbdt)(CO)<sub>6</sub><sup>38</sup> are also given in Table 1. We have chosen these materials for co[mpa](#page-6-0)rison because [the](#page-6-0)y are examples of experimentally [rea](#page-6-0)lized materials having large functional groups, high porosity, and good thermal and chemical stability. The first two materials were produced by PSM, and the last, by PSE. We note that the pore volume and porosity of UiO-66-P-B $F_2$  are larger than for the reported functionalized materials listed in Table 1. This comparison is an indication that it is reasonable to expect that  $UiO-66-P-BF<sub>2</sub>$  can be synthesized by either PSM or PSE and that it will have both good porosity and stability.

Experiments indicate that the isosteric heat for  $H_2$  adsorption (which is directly related to the absolute value of the adsorption energy) in UiO-66 ranges from about 0.06 to 0.12  $eV.$ <sup>58-60</sup> Experimental and calculated isosteric heats for  $CO<sub>2</sub>$  in UiO-66 are ∼0.25<sup>29,36,40,53,60</sup> and 0.27 eV,<sup>34,36</sup> respectively. We [h](#page-7-0)a[ve](#page-7-0) computed physisorption energies of both  $H_2$  and  $CO_2$  in UiO-66 by per[formin](#page-6-0)[g DF](#page-7-0)T molecular [dyna](#page-6-0)mics for exploring the low-energy configurations and optimizing these configurations to local minima (see the Supporting Information and Table S5). The physisorption energies range from  $-0.06$  to  $-0.17$  eV for H<sub>2</sub> and from −0.11 to −0.23 eV for CO<sub>2</sub> in UiO-66, [ind](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf)icating that our disper[sion-corrected](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf) [DFT](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf) [approach](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf) [gives](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf) reasonably accurate adsorption energies.

Our calculations show that  $H_2$  is heterolytically dissociated in UiO-66-P-BF<sub>2</sub>, with one atom  $(H_a)$  bound to B and another  $(H_b)$  bound to  $N_b$  (Figure 2b), generating hydridic  $(H_a)$  and protic ( $H_b$ ) hydrogens. The  $H_a$ –B and  $H_b$ – $N_b$  bond lengths are 1.219 and 1.018 Å, respectively. The dissociative adsorption energy of  $H_2$  in UiO-66-P-BF<sub>2</sub> is  $-0.27$  eV, which is much less favorable than that for FLP1 (−0.92 eV; see Table S3 in the Supporting Information). The  $H_2$  dissociation energy profile is shown in Figure 3. We found an intermediate van der Waals (vdW) complex, H<sub>2</sub>(vdW),  $E_{ad} = -0.01$  eV, relative to that in



Figure 3. Relative energy profile for dissociation of  $H_2$  in UiO-66-P- $BF<sub>2</sub>$ .

the gas phase. Note that this is not the global minimum for  $H_2$ adsorbed in the pore, but is a local minimum on the reaction pathway. The  $H_a$ -B and  $H_b$ -N<sub>b</sub> distances in this physisorbed complex are 3.057 and 2.800 Å, respectively. The transition state for dissociation, TS1, has a barrier of  $\Delta E = 0.53$  eV. The barrier for the reverse reaction (recombination) is 0.79 eV.

The reaction pathway for  $CO<sub>2</sub>$  chemisorption in UiO-66-P- $BF_2$  is shown in Figure 4. As with  $H_2$ , an intermediate vdW



Figure 4. Relative energy profile for  $CO<sub>2</sub>$  chemisorption in UiO-66-P- $BF<sub>2</sub>$  from the gas phase.

complex ( $CO_2(vdW)$ ,  $E_{ad} = -0.04$  eV) in the pore was also detected. The  $\rm O_{a}-B$  and  $\rm C-N_{b}$  distances of 3.323 and 3.129 Å in this complex decrease as the reaction proceeds. The transition state (TS2) is shown as an inset in Figure 4. The activation barrier for  $CO<sub>2</sub>$  chemisorption is 0.28 eV, and the release of  $CO_2$  from  $CO_2^*$  requires an activation energy of ~0.95 eV. The C atom in  $CO_2^*$  binds to the atom denoted  $N_b$ with a bond length of 1.466 Å, and the O atom in  $CO_2^*$  binds to the B atom with a bond length of 1.526 Å. The  $C-O<sub>a</sub>$  and  $C-O<sub>b</sub>$  bonds are elongated to 1.313 and 1.209 Å, respectively, from the gas phase value of 1.176 Å. The  $O<sub>a</sub>$ -C-O<sub>b</sub> angle is reduced to 130.3°, compared with 180° in the gas phase and is indicative of charge transfer to  $CO_2^*$ . The geometry of  $CO_2^*$  in UiO-66-P-BF<sub>2</sub> is very close to that of  $CO_2$  bound to FLP1.<sup>55</sup> The adsorption energy of  $CO_2$  in UiO-66-P-BF<sub>2</sub> is  $-0.71$  eV relative to that in the gas phase, which is slightly less favora[ble](#page-7-0) than that for FLP1  $(-0.87 \text{ eV})$ ; see Table S3 in the Supporting Information).

Our calculations demonstrate that the LP in UiO-66-P-BF<sub>2</sub> retains the chemical activity of **FLP1** toward  $H_2$  and  $CO_2$ . We now consider reaction pathways for  $H_2$  reacting with  $CO_2$  in  $UiO-66-P-BF<sub>2</sub>$ .

We have identified two reaction pathways for  $CO<sub>2</sub>$ hydrogenation within UiO-66-P-BF<sub>2</sub>, as shown in Figure 5. One pathway involves physisorbed  $CO<sub>2</sub>$  reacting with chemisorbed 2H\* (green line in Figure 5), and the oth[er](#page-4-0) involves physisorbed  $H_2$  reacting with  $CO_2^*$  (red line in Figure 5). The first part of the green line in Figure [5](#page-4-0) is the same as in Figure 3 for dissociation of  $H_2$ . The adsorption energy of  $CO_2$ [ad](#page-4-0)sorbing in the pore with  $2H^*$  is  $-0.21$  eV [r](#page-4-0)elative to  $CO_2$  in the gas phase. The transition state for  $CO<sub>2</sub>$  hydrogenation (TS3 in Figure 5) has a barrier of 0.47 eV. We note that the addition of the hydridic and protic hydrogens occurs in a concerted fashion, [ra](#page-4-0)ther than a stepwise mechanism. The concerted mechanism for  $CO<sub>2</sub>$  reduction has been predicted to be a lower energy pathway than the stepwise mechanism. $61$  The formic acid product has an energy that is 0.21 eV lower than the gas phase  $H_2$  and  $CO_2$  reactants. Desorption of HC[OO](#page-7-0)H to the gas phase requires 0.34 eV of energy, raising the final product state 0.13 eV above the reactants, which is consistent with hydrogenation of  $CO<sub>2</sub>$  being endothermic.

The second reaction pathway (red line in Figure 5) starts with chemisorption of  $CO<sub>2</sub>$  from the gas phase onto UiO-66-P- $BF<sub>2</sub>$ , followed by the [ad](#page-4-0)sorption of  $H<sub>2</sub>$  to form a coadsorbed complex  $(H_2 + CO_2^*)$ . The reaction barrier for hydrogenation of the activated  $CO_2^*$  is 2.65 eV (TS4 in Figure 5). This barrier is similar to the gas phase uncatalyzed reaction barrier (Figure 6), but leads to the formation of chemisorbed [H](#page-4-0)CO and OH ([HCO+OH]\*) instead of HCOOH. This illustrates that P- $BF<sub>2</sub>$  $BF<sub>2</sub>$  binds  $CO<sub>2</sub>$  too strongly to produce a low barrier pathway to hydrogenation of  $CO<sub>2</sub>$ , in accordance with the general Sabatier principle. Moreover, this pathway leads to the wrong product.

Our calculations show that the desired  $CO<sub>2</sub>$  reduction mechanism proceeds via  $H_2$  heterolytic dissociation, followed by  $CO<sub>2</sub>$  reaction with the chemisorbed H atoms to produce HCOOH. Given that  $CO<sub>2</sub>$  is much more strongly bound to the LP than  $H_2$ , practical use of UiO-66-P-BF<sub>2</sub> for CO<sub>2</sub> reduction will require that this material be exposed first to  $H_2$  and then to  $CO<sub>2</sub>$  in sequence to prevent poisoning of the LP by  $CO<sub>2</sub>$ . It is also important to prevent  $H_2O$  exposure to the LP sites because of its tendency to strongly bind to similar moieties.<sup>62</sup> This could be accomplished by embedding the LP sites in the core of a core-shell MOF capable of admitting  $CO<sub>2</sub>$  and  $H<sub>2</sub>$  while rejecting  $H_2O$ , such as that designed by Li et al.<sup>63</sup> The requirement of sequential exposure of UiO-66-P-BF<sub>2</sub> to  $H_2$ followed by  $CO<sub>2</sub>$  would prohibit its practical use. Neve[rth](#page-7-0)eless, our calculations provide a proof-of-concept that functional groups can be devised from computations that dramatically reduce the barriers for  $CO<sub>2</sub>$  reduction. Moreover, the large variety of MOFs and functional groups available means that it may be possible to design a material without the need for sequential adsorption by utilizing functional groups specifically targeted to binding  $H_2$  and  $CO_2$  separately.

We computed reaction pathways for hydrogenation of  $CO<sub>2</sub>$ in the gas phase (not in UiO-66) via three mechanisms: (i) uncatalyzed,  $(ii)$  catalyzed by FLP1, and  $(iii)$  catalyzed by P-BF<sub>2</sub>. These calculations shed light on the role of UiO-66 and P- $BF<sub>2</sub>$  in UiO-66-P-BF<sub>2</sub>. The results of these calculations are shown in Figure 6, and the structural details are included in Figure S7 of the Supporting Information. The reaction pathway

<span id="page-4-0"></span>

Figure 5. Relative potential energy surfaces for two different CO<sub>2</sub> hydrogenation pathways in UiO-66-P-BF<sub>2</sub>. The energy reference is CO<sub>2</sub>(g) +  $H_2(g)$  and the empty UiO-66-P-BF<sub>2</sub>. Selected configurations from the potential energy surfaces are given below the graph.

for hydrogenation of  $CO<sub>2</sub>$  in the gas phase has a barrier of 2.76 (2.70) eV with (without) ZPE corrections. This compares reasonably well with experimental results  $2.85 \text{ eV}^{64}$  and is somewhat lower than the value of 3.17 eV computed from the M06-L functional<sup>65,66</sup> without ZPE corrections re[po](#page-7-0)rted by Maihom et al.<sup>67</sup>

The reaction p[athwa](#page-7-0)y for hydrogenation of  $CO<sub>2</sub>$  catalyzed by FLP1 is very [sim](#page-7-0)ilar to the pathway we computed for UiO-66- P-BF<sub>2</sub>. The two barriers are 0.45 and 0.91 eV for  $H_2$ dissociation and HCOOH formation, respectively, as can be seen from the orange line in Figure 6. The  $H_2$  dissociation barrier in **FLP1** is slightly lower than in UiO-66-P-BF<sub>2</sub>, but the  $CO<sub>2</sub>$  hydrogenation barrier is conside[rab](#page-5-0)ly larger (0.47 eV in UiO-66-P-BF<sub>2</sub> versus 0.91 eV in FLP1), indicating that the reaction rate in  $UiO-66-P-BF<sub>2</sub>$  will be larger than for **FLP1**. The gas phase  $P-BF_2$  reaction is shown as the blue line in Figure 6. The reaction barrier for  $H_2$  dissociation is 0.73 and 0.53 eV for  $CO<sub>2</sub>$  hydrogenation. The  $CO<sub>2</sub>$  hydrogenation barrier is close [to](#page-5-0) that in UiO-66-P-BF<sub>2</sub>; in contrast, the  $H_2$  dissociation barrier is 0.2 eV higher. Comparison of these systems gives the following observations: (1) the dissociation barrier for  $H_2$  follows the order P-BF<sub>2</sub> > UiO-66-P-BF<sub>2</sub> > FLP1; (2) the  $CO_2$ hydrogenation barrier follows the order  $FLP1$  >  $P-BF<sub>2</sub>$  > UiO-66-P-BF<sub>2</sub>; (3) the apparent effects of the UiO-66 framework on the reactivity of  $P-BF_2$  are to (i) reduce the

barrier for  $H_2$  dissociation, (ii) increase the adsorption energy for  $2H^*$ , and (iii) reduce the barrier for  $CO_2$  hydrogenation.

An explanation for the trends in  $H_2$  dissociation barriers can be found by examining the torsion angles defined by the two nitrogens on the pyrazole ring and the boron and the carbon (FLP1) or fluorine (P-BF<sub>2</sub> and UiO-66-P-BF<sub>2</sub>) atoms in these three systems (see Table S6 and Figure S16 in the Supporting Information). The torsion angle in FLP1 is the largest at 44.89°, followed by UiO-66-P-BF<sub>2</sub> with 22.84°, whereas P-BF<sub>2</sub> [has the smal](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf)lest angle of 0.08° (see Table S6 in the Supporting Information). The larger torsion angle facilitates  $H_2$  dissociation, as can be seen from the torsion angles res[ulting after](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf) [chemisorptio](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf)n of  $H_2$  (2H<sup>\*</sup>; Table S6 in the Supporting Information). The calculated torsional rotation energy for the  $BF<sub>2</sub>$  group in P-BF<sub>2</sub> going from 0° to 22.84° (44.89°[\) is 0.10](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf)  $(0.31)$  eV; hence, the decrease in the H<sub>2</sub> dissociation barrier going from  $P-BF_2$  to UiO-66-P-BF<sub>2</sub> is due to the confinement of P-BF<sub>2</sub> in UiO-66, which gives rise to the observed equilibrium torsion angle of 22.84°. Moreover, the steric hindrance of the bulky  $C_6F_5$  groups in **FLP1** give rise to the large torsion angle that lowers the barrier for  $H<sub>2</sub>$  dissociation. Hence, in this case, steric hindrance enhances  $H_2$ 's interacting with the Lewis pairs, $68-70$  rather than increasing the reaction barrier.<sup>18</sup>

<span id="page-5-0"></span>

Figure 6. Relative potential energy surfaces for gas phase  $CO<sub>2</sub>$  hydrogenation without a catalyst (black), catalyzed by FLP1 (orange), and catalyzed by P-BF<sub>2</sub> (blue). The UiO-66-P-BF<sub>2</sub> pathway from Figure 5 is shown for comparison (green).

The difference in the  $CO<sub>2</sub>$  hydrogenation [b](#page-4-0)arriers between **FLP1** and P-BF<sub>2</sub> or UiO-66-P-BF<sub>2</sub> is attributed to the much stronger binding energy for  $H_2$  according on FLP1, in accordance with the Brønsted−Evans−Polanyi (BEP) principle.<sup>71−73</sup> The stronger binding energy of  $H_2$  in FLP1 is consistent with the shorter distance between the Lewis acid (B) an[d base](#page-7-0)  $(N_b)$  sites and stronger acidity and basicity in **FLP1** than in  $P-BF_2$  (see Table S6-S7 in the Supporting Information).<sup>74</sup> The difference between the hydrogenation barriers for P-BF<sub>2</sub> and UiO-66-P-BF<sub>2</sub> is fairly sma[ll \(0.04 eV\),](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf) [although the](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf) [di](#page-7-0)fference in the  $H_2$  chemisorption energies is 0.21 eV, in apparent disagreement with the BEP principle. We have verified that the difference in the  $H_2$  adsorption energies is not due to differences in charge distribution or vdW interactions (see Tables S8 and S9 in the Supporting Information). In contrast, there is significant vdW stabilization (0.33 eV) of  $CO<sub>2</sub>$ in UiO-66-P-BF<sub>2</sub> compared with P-BF<sub>2</sub>, as can be seen by comparing the adsorption energies of  $CO<sub>2</sub>$  on UiO-66-P-BF<sub>2</sub>/ 2H\* with and without vdW interactions (Table S9 in the Supporting Information). It is surprising that the hydrogenation barriers are similar on P-BF<sub>2</sub>/2H<sup>\*</sup> and UiO-66-P-BF<sub>2</sub>/2H<sup>\*</sup>, given that the  $H_2$  adsorption energies are significantly different. The reason for this is likely due to differences in the initial geometries of the CO<sub>2</sub> vdW complexes, denoted CO<sub>2</sub> + 2H<sup>\*</sup> and shown in Figure 5 and Figure S7c of the Supporting Information for UiO-66-P-BF<sub>2</sub>/CO<sub>2</sub>+2H<sup>\*</sup> and P-BF<sub>2</sub>/  $CO<sub>2</sub>+2H<sup>*</sup>$ , respective[ly](#page-4-0). The two  $O<sub>b</sub>-H<sub>b</sub>$  bo[nd lengths](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf) [\(Supporting I](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf)nformation) are 1.999 and 2.269 Å, respectively. The shorter  $O_b$ −H<sub>b</sub> bond length in UiO-66-P-BF<sub>2</sub>/CO<sub>2</sub> + 2H<sup>\*</sup> i[s due to con](http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b00396/suppl_file/cs5b00396_si_001.pdf)finement effects, perhaps partially as a result of vdW forces. This is an example of how the geometry of the

pore might modulate a reaction barrier in ways not easily foreseen.

#### ■ SUMMARY AND OUTLOOK

We have demonstrated that functionalization of UiO-66 with a Lewis pair moiety results in an apparently stable structure with only very minor perturbation to the lattice parameters. There are many routes for synthesizing MOFs having functional groups of size and complexity similar to that of  $UiO-66-P-BF_{2}$ ; a hypothetical pathway for the synthesis of  $UiO-66-P-BF<sub>2</sub>$  based on combining ideas based on synthesis of FLP1 and mixed ligand synthesis is given in the Supporting Information. The Lewis pair retains its chemical activity when bound in the pore, being able to facilely bind  $H_2$  and  $CO_2$ . Furthermore,  $CO_2$  can be reduced via a low energy barrier pathway by first exposing UiO-66-P-BF<sub>2</sub> to  $H_2$ , giving heterolytic dissociation, followed by exposure to  $CO<sub>2</sub>$ . The dissociation of  $H<sub>2</sub>$  has a slightly higher barrier than hydrogenation of  $CO<sub>2</sub>$ , which occurs in a single step. The reaction barriers are much lower than those reported in the literature for heterogeneous reduction of  $CO<sub>2</sub>$  to HCOOH, which are typically on the order of 1 eV.<sup>10-15</sup> Importantly, the barriers are comparable with or lower than the lowest barriers reported for homogeneous reduction of  $CO<sub>2</sub>$ with heterogeneous organometallic catalysts.<sup>75−77</sup> Thus, our catalyst combines the advantages of homogeneous catalysts (ease of catalyst recovery, high mass transfe[r,](#page-7-0) [etc](#page-7-0).) with the advantages of homogeneous catalysts (low reaction barriers).<sup>22,23</sup> Moreover, the catalytic sites are metal-free Lewis acid and base pairs (the framework contains metals, but these are n[ot pa](#page-6-0)rt of the catalytic functional groups in the pores).

Our calculations indicate that the critical step in the reaction is splitting  $H_2$  into hydridic and protic species to facilitate

<span id="page-6-0"></span>concerted addition of hydrogens to form HCOOH. This happens without activating the  $CO<sub>2</sub>$ . Conversely, starting from an activated  $CO_2^*$  complex without activating the  $H_2$  leads to a very high barrier for hydrogenation and produces chemisorbed formyl and hydroxyl moieties rather than the desired HCOOH product. This is due to  $CO_2$ 's being bound too strongly to UiO-66-P-BF<sub>2</sub>. Hence, for the UiO-66-P-BF<sub>2</sub> catalyst to work in practice, one would have to expose the material first to  $H_2$  and then to  $CO<sub>2</sub>$  to avoid the competing reaction and potential poisoning of the catalyst. This requirement is a major drawback for UiO-66-P-BF<sub>2</sub> that would preclude its practical use. An ideal catalyst would selectively bind  $CO<sub>2</sub>$  more weakly than the P- $BF<sub>2</sub>$  moiety while providing a binding site that selectively dissociates  $H_2$  similar to P-BF<sub>2</sub>. This would require a MOF having two complementary binding sites with the pore positioned such that the  $2H^*$  and  $CO_2^*$  have the correct binding energy (Sabatier principle) and mutual orientation (3 dimentional structure) to minimize the overall reaction barriers. This kind of control over binding sites and orientations is very difficult to achieve in typical metal or metal oxide catalysts but may be possible in tailored functionalized MOFs. We will investigate the activity of other Lewis pair functional groups and addition of multiple binding sites per pore for simultaneous activation of  $CO<sub>2</sub>$  and  $H<sub>2</sub>$  in future work.

# ■ ASSOCIATED CONTENT

#### **S** Supporting Information

The following file is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.5b00396.

Computational methods, accuracy tests, optimized l[attice](http://pubs.acs.org) [constants, stru](http://pubs.acs.org)ctural [details, reaction energy p](http://pubs.acs.org/doi/abs/10.1021/acscatal.5b00396)rofiles, proposed synthetic pathway (PDF)

# ■ AUTHOR INFORMATION

#### Corresponding Author

\*E-mail: karlj@pitt.edu.

#### **Notes**

The auth[ors declare no](mailto:karlj@pitt.edu) competing financial interests.

# ■ ACKNOWLEDGMENTS

We gratefully acknowledge the support from the U.S. Department of Energy (Grant No. DE-FG02-10ER16165). We thank N. L. Rosi, E. J. Beckman, and J. A. Keith for many helpful discussions. The computations were performed at the University of Pittsburgh's Center for Simulation & Modeling and at the Extreme Science and Engineering Discovery Environment (XSEDE) under project TG-CHE140046.

#### ■ REFERENCES

- (1) Aresta, M.; Dibenedetto, A. Dalton Trans. 2007, 2975−2992.
- (2) Olah, G. A.; Prakash, G. K. S.; Goeppert, A. J. Am. Chem. Soc. 2011, 133, 12881−12898.
- (3) Ma, J.; Sun, N.; Zhang, X.; Zhao, N.; Xiao, F.; Wei, W.; Sun, Y. Catal. Today 2009, 148, 221−231.
- (4) Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 43, 631−675.
- (5) Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C. F.; Hummelshøj, J. S.; Dahl, S.; Chorkendorff, I.; Nørskov, J. K. Nat. Chem. 2014, 6, 320−324.
- (6) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703−3727.
- (7) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.

(8) Federsel, C.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 6254−6257.

- (9) Cheng, D.; Negreiros, F. R.; Apra, E.; Fortunelli, A. ̀ ChemSusChem 2013, 6, 944−965.
- (10) Peng, G.; Sibener, S. J.; Schatz, G. C.; Mavrikakis, M. Surf. Sci. 2012, 606, 1050−1055.
- (11) Peng, G.; Sibener, S. J.; Schatz, G. C.; Ceyer, S. T.; Mavrikakis, M. J. Phys. Chem. C 2011, 116, 3001−3006.

(12) Vesselli, E.; Rizzi, M.; De Rogatis, L.; Ding, X.; Baraldi, A.; Comelli, G.; Savio, L.; Vattuone, L.; Rocca, M.; Fornasiero, P.; Baldereschi, A.; Peressi, M. J. Phys. Chem. Lett. 2009, 1, 402−406.

- (13) Pan, Y.-x.; Liu, C.-j.; Ge, Q. J. Catal. 2010, 272, 227−234.
- (14) Grabow, L. C.; Mavrikakis, M. ACS Catal. 2011, 1, 365−384.
- (15) Zhao, Y.-F.; Yang, Y.; Mims, C.; Peden, C. H. F.; Li, J.; Mei, D. J. Catal. 2011, 281, 199−211.
- (16) Ashley, A. E.; O'Hare, D. Curr. Top. Chem. 2013, 334, 191−217.
- (17) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46− 76.
- (18) Courtemanche, M.-A.; Légaré, M.-A.; Maron, L.; Fontaine, F.-G. J. Am. Chem. Soc. 2014, 136, 10708−10717.
- (19) Lim, C.-H.; Holder, A. M.; Hynes, J. T.; Musgrave, C. B. Inorg. Chem. 2013, 52, 10062−10066.
- (20) Ménard, G.; Stephan, D. W. J. Am. Chem. Soc. 2010, 132, 1796− 1797.
- (21) Sgro, M. J.; Domer, J.; Stephan, D. W. Chem. Commun. 2012, 48, 7253−7255.
- (22) Zhang, X.; Llabrés i Xamena, F. X.; Corma, A. J. Catal. 2009, 265, 155−160.
- (23) Notestein, J. M.; Katz, A. Chem. Eur. J. 2006, 12, 3954−3965. (24) Bae, Y.-S.; Snurr, R. Q. Angew. Chem., Int. Ed. 2011, 50, 11586− 11596.
- (25) Han, S.; Huang, Y.; Watanabe, T.; Dai, Y.; Walton, K. S.; Nair, S.; Sholl, D. S.; Meredith, J. C. ACS Comb. Sci. 2012, 14, 263−267.
- (26) Wilmer, C. E.; Farha, O. K.; Bae, Y.-S.; Hupp, J. T.; Snurr, R. Q. Energy Environ. Sci. 2012, 5, 9849−9856.

(27) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850−13851.

- (28) Garibay, S. J.; Cohen, S. M. Chem. Commun. 2010, 46, 7700− 7702.
- (29) Huang, Y.; Qin, W.; Li, Z.; Li, Y. Dalton Trans. 2012, 41, 9283− 9285.
- (30) Kim, M.; Cohen, S. M. CrystEngComm 2012, 14, 4096−4104.
- (31) Wu, H.; Yildirim, T.; Zhou, W. J. Phys. Chem. Lett. 2013, 4, 925−930.
- (32) Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Chem. Mater. 2011, 23, 1700−1718.
- (33) Biswas, S.; Zhang, J.; Li, Z. B.; Liu, Y. Y.; Grzywa, M.; Sun, L. X.; Volkmer, D.; Van der Voort, P. Dalton Trans. 2013, 42, 4730−4737.
- (34) Yang, Q.; Wiersum, A. D.; Llewellyn, P. L.; Guillerm, V.; Serre, C.; Maurin, G. Chem. Commun. 2011, 47, 9603−9605.
- (35) Yang, Q. Y.; Guillerm, V.; Ragon, F.; Wiersum, A. D.; Llewellyn, P. L.; Zhong, C. L.; Devic, T.; Serre, C.; Maurin, G. Chem. Commun. 2012, 48, 9831−9833.
- (36) Yang, Q.; Wiersum, A. D.; Jobic, H.; Guillerm, V.; Serre, C.; Llewellyn, P. L.; Maurin, G. J. Phys. Chem. C 2011, 115, 13768−13774.
- (37) Yang, Q. Y.; Wiersum, A. D.; Llewellyn, P. L.; Guillerm, V.; Serred, C.; Maurin, G. Chem. Commun. 2011, 47, 9603−9605.
- (38) Pullen, S.; Fei, H.; Orthaber, A.; Cohen, S. M.; Ott, S. J. Am. Chem. Soc. 2013, 135, 16997−17003.
- (39) Luan, Y.; Zheng, N. N.; Qi, Y.; Yu, J.; Wang, G. Eur. J. Inorg. Chem. 2014, 4268−4272.
- (40) Cmarik, G. E.; Kim, M.; Cohen, S. M.; Walton, K. S. Langmuir 2012, 28, 15606−15613.
- (41) Vermoortele, F.; Bueken, B.; Le Bars, G.; Van de Voorde, B.; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; Van Speybroeck, V.; Kirschhock, C.; De Vos, D. E. J. Am. Chem. Soc. 2013, 135, 11465−11468.

<span id="page-7-0"></span>(42) VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Comput. Phys. Commun. 2005, 167, 103−128. (43) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys.

2010, 132, 154104.

- (44) Wang, C.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2012, 134, 7211−7214.
- (45) Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2011, 133, 13445−13454.
- (46) Kim, M.; Cahill, J. F.; Su, Y.; Prather, K. A.; Cohen, S. M. Chem. Sci. 2012, 3, 126−130.
- (47) Cohen, S. M. Chem. Rev. 2012, 112, 970−1000.
- (48) Kim, M.; Garibay, S. J.; Cohen, S. M. Inorg. Chem. 2011, 50, 729−731.
- (49) Wang, Z.; Cohen, S. M. Chem. Soc. Rev. 2009, 38, 1315−1329.
- (50) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865−3868.

(51) Goedecker, S.; Teter, M.; Hutter, J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 1703−1710.

(52) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09 Revision B.01, 2009.

(53) Wiersum, A. D.; Soubeyrand-Lenoir, E.; Yang, Q.; Moulin, B.; Guillerm, V.; Yahia, M. B.; Bourrelly, S.; Vimont, A.; Miller, S.; Vagner, C.; Daturi, M.; Clet, G.; Serre, C.; Maurin, G.; Llewellyn, P. L. Chem. - Asian J. 2011, 6, 3270−3280.

(54) Theuergarten, E.; Schluns, D.; Grunenberg, J.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. Chem. Commun. 2010, 46, 8561−8563.

(55) Theuergarten, E.; Schlosser, J.; Schluns, D.; Freytag, M.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. Dalton Trans. 2012, 41, 9101−9110.

(56) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901−9904.

(57) Spek, A. J. Appl. Crystallogr. 2003, 36, 7−13.

(58) Ren, J.; Segakweng, T.; Langmi, H.; Musyoka, N.; North, B.; Mathe, M.; Bessarabov, D. Int. J. Mater. Res. 2014, 105, 516−519.

(59) Zlotea, C.; Phanon, D.; Mazaj, M.; Heurtaux, D.; Guillerm, V.; Serre, C.; Horcajada, P.; Devic, T.; Magnier, E.; Cuevas, F.; Ferey, G.;

Llewellyn, P. L.; Latroche, M. Dalton Trans. 2011, 40, 4879−4881.

(60) Abid, H. R.; Tian, H.; Ang, H.-M.; Tade, M. O.; Buckley, C. E.; Wang, S. Chem. Eng. J. 2012, 187, 415−420.

(61) Zimmerman, P. M.; Zhang, Z.; Musgrave, C. B. Inorg. Chem. 2010, 49, 8724−8728.

- (62) Stephan, D. W.; Greenberg, S.; Graham, T. W.; Chase, P.;
- Hastie, J. J.; Geier, S. J.; Farrell, J. M.; Brown, C. C.; Heiden, Z. M.; Welch, G. C.; Ullrich, M. Inorg. Chem. 2011, 50, 12338−12348.

(63) Li, T.; Sullivan, J. E.; Rosi, N. L. J. Am. Chem. Soc. 2013, 135, 9984−9987.

(64) Saito, K.; Kakumoto, T.; Kuroda, H.; Torii, S.; Imamura, A. J. Chem. Phys. 1984, 80, 4989−4996.

(65) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157−167.

(66) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. C 2008, 112, 6860−6868.

(67) Maihom, T.; Wannakao, S.; Boekfa, B.; Limtrakul, J. J. Phys. Chem. C 2013, 117, 17650−17658.

(68) Camaioni, D. M.; Ginovska-Pangovska, B.; Schenter, G. K.; Kathmann, S. M.; Autrey, T. J. Phys. Chem. A 2012, 116, 7228−7237.

(69) Wang, Z.; Lu, G.; Li, H.; Zhao, L. Chin. Sci. Bull. 2010, 55, 239− 245.

(70) Rokob, T. A.; Hamza, A.; Stirling, A.; Soós, T.; Pápai, I. Angew. Chem., Int. Ed. 2008, 47, 2435−2438.

(71) Bligaard, T.; Nørskov, J. K.; Dahl, S.; Matthiesen, J.; Christensen, C. H.; Sehested, J. J. Catal. 2004, 224, 206−217.

(72) Michaelides, A.; Liu, Z. P.; Zhang, C. J.; Alavi, A.; King, D. A.; Hu, P. J. Am. Chem. Soc. 2003, 125, 3704−3705.

- (73) Jiang, T.; Mowbray, D. J.; Dobrin, S.; Falsig, H.; Hvolbæk, B.;
- Bligaard, T.; Nørskov, J. K. J. Phys. Chem. C 2009, 113, 10548−10553. (74) Rokob, T. A.; Hamza, A.; Pápai, I. J. Am. Chem. Soc. 2009, 131, 10701−10710.

(75) Hou, C.; Jiang, J.; Zhang, S.; Wang, G.; Zhang, Z.; Ke, Z.; Zhao, C. ACS Catal. 2014, 4, 2990−2997.

(76) Ahlquist, M. S. G. J. Mol. Catal. A: Chem. 2010, 324, 3−8.

(77) Urakawa, A.; Jutz, F.; Laurenczy, G.; Baiker, A. Chem. - Eur. J. 2007, 13, 3886−3899.